Chapter 7 Questions

1) Complete the table of values for the given quadratic function. Then, graph the points from the table of values.
$y=x^{2}-4 x+3$

x	y	$y=(-1)^{2}-4(-1)+3$
-1	8	$y=1+4+3$
0	3	$y=8$
1	0	$y=(0)^{2}-4(0)+3$
2	-1	$y=0+0+3$
3	0	$y=3$
4	3	$y=(1)^{2}-4(1)+3$
	$y=1-4+3$	
	$y=0$	
	$=(2)^{2}-4(2)+3$	
	$y=4-8+3$	
y	$=-1$	

2) Which of the following relations are quadratic?
Circle all of the quadratic relations.
(a) $y=x^{2}+4 \checkmark$
(d) $y=(x+1)^{2}$
(b) $y=\widehat{2(x+4)}$
b) $y=2(x+4)$
e) $y=2 x+4$
(C) $y=2 x(x+4)$
f) $y=2 x^{3}+3 x^{2}-4$
(c) $y=2 x(x+4)$
$y=2 x^{2}+8 x \vee$
(d) $\begin{aligned} y & =(x+1)^{2} \\ y & =(x+1)(x+1)\end{aligned}$ cant have " $x^{3 \prime}$
3) Answer the questions based on the graph of the quadratic function. (4 marks)

Coordinates of the vertex: \qquad
Axis of symmetry: $x=-4$ \qquad
Domain: $x \in R$
Range: \qquad
4) For the following functions, state the direction of opening (up or down) and the y -intercept.
$y=2 x^{2}-7 x-10$
$a=2 \leftarrow$ positive

Opens: \qquad up

$$
y=a x^{2}+b x+c
$$

$y=a x^{2}+b x+c$

$y=4 x-3 x^{2}$
$y=-3 x^{2}+4 x+0$

$a=-3-$ negative
$y=(x-4)^{2}-9$
$y=x^{2}-8 x+16-9$
$y=x^{2}-8 x+7$

Opens: down \quad| dow |
| :--- |
| y-intercept: 0 |

Opens: $\frac{y p}{}$
y-intercept: Z

5) The points $(7,4)$ and $(-3,4)$ are on the same parabola. Determine the equation equation of the axis of symmetry.

6) With a graphing calculator, determine the coordinates of the vertex for the given function. Round your answer to 2 decimal places.

$$
f(x)=2 x^{2}+9 x+2 \quad 2^{n d} \text { trace minimum }
$$

$\underset{x \min }{[-10, ~} 10]$ max $\underset{y \min }{[-10, ~} \underset{y \text { max }}{10}]$
left bound enter
right bound enter
guess enter

Vertex: $(-2.25,-8.13)$
7) Represent the quadratic equation in standard form. Then solve the equation in standard form by graphing. Round your answers) to 2 decimal places if necessary.

8) For each quadratic function in factored form, determine:
a) The direction of opening (up/down)
b) The x-intercepts of the graph.
c) The y-intercept of the graph.
d) The equation of the axis of symmetry.

9) Determine the function in factored form $(y=\pi(x-r)(x-s))$ that defines the parabola below.

$$
\left.\begin{array}{rl}
x \text {-ints } \rightarrow y & =a(x+6)(x-2) \\
\text { sub }(0,-6) \text { to determine 'a' } \\
x^{\prime} & \\
-6 & =a(0+6)(0-2) \\
-6 & =a(6)(-2) \\
-6 & =-12 a \\
-12 & a=0.5
\end{array}\right)
$$

Answer: \square
10) A soccer ball was kicked from the ground. The soccer ball reached a height of 15 m after 1.5 s of flight. The soccer ball was in the air for 4 s
a) Sketch a diagram of the soccer ball's path and determine the quadratic function in factored form that models the height of the soccerball over time.

x-int $\Rightarrow y=a(x-0)(x-4)$

b) Determine the maximum height of the soccer ball (1 mark).
Occurs when $x=2$

$$
\begin{aligned}
& y=-4(2-0)(2-4) \\
& y=-4 \cdot 2 \cdot-2=16 \mathrm{~m}
\end{aligned}
$$

11) Solve by factoring. Then, check your solutions.

12) Solve each equation by factoring.

13) Juliette sells newspapers. The profit function for her business is $P(n)=-0.5 n^{2}+6 n-10$ where n is the number of newspapers sold per month, in hundreds, and $\mathrm{P}(\mathrm{n})$ is the profit, in thousands of dollars.
a) How many newspapers must Juliette sell per month to break even?

$$
\begin{aligned}
& 0=-0.5 n^{2}+6 n-10 \\
& 0=-0.5\left(n^{2}-12 n+20\right) \\
& 0=-0.5(n-2)(n-10) \\
& n=2 n=n=10
\end{aligned}
$$

\therefore Juliette must sell 200 or 1000 papers
b) In order to maximize her profit, how many newspapers would Juliette
have to sell? How much profit would she earn if she sold this many newspapers?

would have to sell 600 newspapers

$$
\begin{aligned}
& P(n)=-0.5 n^{2}+6 n-10 \\
& P(n)=-0.5(6)^{2}+6(6)-10 \\
& P(n)=-0.5(36)+36-10 \\
& P(n)=-18+36-10 \\
& P(n)=8
\end{aligned}
$$

profit would be $\$ 8000$

15) For each quadratic function in vertex form, $y=a(x-h)^{2}+k$, determine:
a) The coordinates of the vertex.
b) The number of x-intercepts (either 0,1, or 2)
c) The value of the y-intercept.

Cords. of vertex: $(2,-1)$
Number of x-intercepts: 2
y-intercept: \qquad
16) Determine the vertex form, $y=a(x-h)^{2}+k$, from the graph

from vertex $\Rightarrow y=a^{b}(x-4)^{2}+0$
sub $(0,8) \rightarrow 8=a(0-4)^{2}+0$
$8=a(-4)^{2}+0$
$\frac{8}{16}=\frac{16 a}{16}$
$a=\frac{8}{16} \circ \cdot \frac{1}{2}$
Answer:

17) A water rocket is launched from the ground. It lands back on the ground after 6 s after reaching a maximum height of 27 m . Determine the specific quadratic function in vertex form that models the height of the water rocket.

from vertex $\Rightarrow y=\underset{a}{a}(x-3)^{2}+27$
$\operatorname{sub}(0,0) \rightarrow 0=a(0-3)^{2}+27$
$0=a(-3)^{2}+27$

Answer:

18) Solve each quadratic equation using the quadratic formula. Express your solutions) to 2 decimal places if necessary.

19) Solve. State your solution(s) as ar exact value in simplest form.

Final Exam Page 8

